Equispreading Tree in Manhattan Distance

M. Edahiro*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The equispreading tree on the plane with Manhattan distance, which is a Steiner tree such that all paths from the root to all leaves have the same length, is analyzed. This problem is not only fundamental in computational geometry but also critical for equidistant routings in VLSI clock design. Several characteristics for the trees are discussed together with an algorithm constructing equispreading trees in the bottom-up fashion. This algorithm achieves linear time and space complexity with respect to the number of leaves, and minimizes the path length from the root to leaves. Furthermore, this paper shows that the shortest-path-length equispreading trees are related to the smallest enclosing circles in Manhattan distance.

本文言語English
ページ(範囲)316-338
ページ数23
ジャーナルAlgorithmica
16
3
DOI
出版ステータスPublished - 1996 9
外部発表はい

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • コンピュータ サイエンスの応用
  • 応用数学

フィンガープリント

「Equispreading Tree in Manhattan Distance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル