Estimation-correction scheme based articulated object tracking using SIFT features and mean shift algorithm

Ying Lu*, Chengjiao Guo, Takeshi Ikenaga

*この研究の対応する著者

研究成果: Conference contribution

7 被引用数 (Scopus)

抄録

Object tracking plays an important role in video surveillance system. However, in the field of object tracking, complex object motion and object occlusions still remains challenging topics. This paper proposes a Estimation-Correction (EC) object tracking scheme in real scenarios, combining the strength of scale invariant feature transform (SIFT) and mean shift algorithm. The corresponding SIFT features are used to estimate the position of the target candidate by the scale and space relation between each pair of features. Then mean shift is applied to conduct the local similarity search so as to find a right position and size of estimated candidate with a maximum likelihood. Experiment results demonstrate that the proposed SIFT/mean shift strategy keeps the tracking error in average 8 pixels and improves the tracking performance compared with the traditional SIFT and mean shift algorithm when tracking objects with complex motion and full occlusion.

本文言語English
ホスト出版物のタイトルNISS2010 - 4th International Conference on New Trends in Information Science and Service Science
ページ275-280
ページ数6
出版ステータスPublished - 2010 10月 18
イベント4th International Conference on New Trends in Information Science and Service Science, NISS2010 - Gyeongju, Korea, Republic of
継続期間: 2010 5月 112010 5月 13

出版物シリーズ

名前NISS2010 - 4th International Conference on New Trends in Information Science and Service Science

Conference

Conference4th International Conference on New Trends in Information Science and Service Science, NISS2010
国/地域Korea, Republic of
CityGyeongju
Period10/5/1110/5/13

ASJC Scopus subject areas

  • 情報システムおよび情報管理

フィンガープリント

「Estimation-correction scheme based articulated object tracking using SIFT features and mean shift algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル