Estimation of interpolation error constants for the triangular finite element

Fumio Kikuchi, Xuefeng Liu

研究成果: Conference contribution

抄録

We give some fundamental results on the error constants for the piecewise constant interpolation function and the piecewise linear one over triangles. We obtain explicit relotions for the dependence of such error constants on the geometric parameters of triangles. In particular, we explicitly determine the Babuska-Aziz constant, which plays an essential role in the interpolation error estimation of the linear triangular finite element The equation for determination is the transcendental equation √λ+tan √λ = 0, so that the solution can be numerically obtained with desired accuracy and verification. Such highly accurate approximate values for the constant as well as estimates for other constants can be widely used for a priori and a posteriori error estimations in adaptive computation and numerical verification of finite element solutions. .

本文言語English
ホスト出版物のタイトル3rd International Conference on Computing, Communications and Control Technologies, CCCT 2005, Proceedings
出版社International Institute of Informatics and Systemics, IIIS
ページ107-112
ページ数6
1
ISBN(印刷版)9806560469, 9789806560468
出版ステータスPublished - 2005
イベント3rd International Conference on Computing, Communications and Control Technologies, CCCT 2005 - Austin, TX
継続期間: 2005 7月 242005 7月 27

Other

Other3rd International Conference on Computing, Communications and Control Technologies, CCCT 2005
CityAustin, TX
Period05/7/2405/7/27

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 制御およびシステム工学

フィンガープリント

「Estimation of interpolation error constants for the triangular finite element」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル