Evaluating surface protonic transport on cerium oxide via electrochemical impedance spectroscopy measurement

Ryo Manabe, Sindre Østby Stub, Truls Norby, Yasushi Sekine*

*この研究の対応する著者

研究成果: Article査読

17 被引用数 (Scopus)

抄録

Surface protonic transport on cerium oxide (CeO2) was investigated using electrochemical impedance spectroscopy (EIS). CeO2 pellets showing low relative density: approximately 60%, was prepared for the purpose. The structure and morphology of the prepared CeO2 pellets were confirmed from XRD and SEM measurements. Results show that the pellets had a pure cubic phase, with open pores on which water can be adsorbed. Electrochemical impedance spectroscopy measurements were taken to evaluate the surface protonic transport on CeO2 as a function of temperature and as a function of partial pressure of water (PH2O) at 400 °C. Investigations of the temperature dependence of the conductivity revealed that only the conductivities of surface grain bulk (σintra) and surface grain boundary (σinter) increased with decreasing temperatures under wet conditions (PH2O = 0.026 atm). The PH2O dependence of surface conductivities (σintra and σinter) revealed that σintra increases strongly with PH2O at 400 °C. These findings provide evidence that water adsorbates play an important role in surface protonic transport on CeO2 at low temperatures. Surface protonic transport at low temperatures can contribute to the expansion of applications for electrical and catalytic processes.

本文言語English
ページ(範囲)45-49
ページ数5
ジャーナルSolid State Communications
270
DOI
出版ステータスPublished - 2018 2

ASJC Scopus subject areas

  • 化学 (全般)
  • 凝縮系物理学
  • 材料化学

フィンガープリント

「Evaluating surface protonic transport on cerium oxide via electrochemical impedance spectroscopy measurement」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル