Evaluation and prediction of blade-passing frequency noise generated by a centrifugal blower

Yutaka Ota, Eleuke Outa, Klyohiro Tajima

    研究成果: Conference contribution

    抄録

    The blade-passing frequency noise, abbreviated to BPF noise, of low specific speed centrifugal blower is analyzed by separating the frequency-response of the transmission passage and the intensity of the noise source. Frequency-response has previously been evaluated by the authors using a onedimensional linear wave model, and the results have agreed well with the experimental response in a practical range of the blower speed. In the present study, the intensity of the noise source is estimated by introducing the quasi-steady model of the blade wake impingement on the scroll surface. The effective location of the noise source is determined by analyzing the cross-correlation between measured data of the blower suction noise and pressure fluctuation on the scroll surface. Then, the surface density distribution of a dipole noise source is determined from pressure fluctuation expressed in terms of quasi-steady dynamic pressure of the traveling blade wake. Finally, the free-field noise level is predicted by integrating the density spectrum of the noise source over the effective source area The sound pressure level of the blower suction noise is easily predicted by multiplying the free-field noise level by the frequency-response characteristics of the noise transmission passage.

    本文言語English
    ホスト出版物のタイトルProceedings of the ASME Turbo Expo
    出版社American Society of Mechanical Engineers (ASME)
    1
    ISBN(印刷版)9780791878835
    DOI
    出版ステータスPublished - 1994
    イベントASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, GT 1994 - The Hague, Netherlands
    継続期間: 1994 6 131994 6 16

    Other

    OtherASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, GT 1994
    国/地域Netherlands
    CityThe Hague
    Period94/6/1394/6/16

    ASJC Scopus subject areas

    • 工学(全般)

    フィンガープリント

    「Evaluation and prediction of blade-passing frequency noise generated by a centrifugal blower」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル