Evolution inclusions governed by subdifferentials in reflexive Banach spaces

Goro Akagi, Mitsuharu Otani

    研究成果: Article査読

    21 被引用数 (Scopus)

    抄録

    The existence, uniqueness and regularity of strong solutions for Cauchy problem and periodic problem are studied for the evolution equation: du(t)/dt + ∂φ(u(t)) ∋ f(t), t ∈]0, T[, where ∂φ is the so-called subdifferential operator from a real Banach space V into its dual V*. The study in the Hilbert space setting (V = V* = H: Hilbert space) is already developed in detail so far. However, the study here is done in the V-V* setting which is not yet fully pursued. Our method of proof relies on approximation arguments in a Hilbert space H. To assure this procedure, it is assumed that the embeddings V ⊂ H ⊂ V* are both dense and continuous.

    本文言語English
    ページ(範囲)519-541
    ページ数23
    ジャーナルJournal of Evolution Equations
    4
    4
    DOI
    出版ステータスPublished - 2004 12

    ASJC Scopus subject areas

    • 生態、進化、行動および分類学

    フィンガープリント

    「Evolution inclusions governed by subdifferentials in reflexive Banach spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル