Exact localized and periodic solutions of the discrete complex Ginzburg-Landau equation

Ken ichi Maruno*, Adrian Ankiewicz, Nail Akhmediev

*この研究の対応する著者

研究成果: Article査読

47 被引用数 (Scopus)

抄録

We study, analytically, the discrete complex cubic Ginzburg-Landau (dCCGL) equation. We derive the energy balance equation for the dCCGL and consider various limiting cases. We have found a set of exact solutions which includes as particular cases periodic solutions in terms of elliptic Jacobi functions, bright and dark soliton solutions, and constant magnitude solutions with phase shifts. We have also found the range of parameters where each exact solution exists. We discuss the common features of these solutions and solutions of the continuous complex Ginzburg-Landau model and solutions of Hamiltonian discrete systems and also their differences.

本文言語English
ページ(範囲)199-209
ページ数11
ジャーナルOptics Communications
221
1-3
DOI
出版ステータスPublished - 2003 6 1
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 原子分子物理学および光学
  • 物理化学および理論化学
  • 電子工学および電気工学

フィンガープリント

「Exact localized and periodic solutions of the discrete complex Ginzburg-Landau equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル