Exact localized solutions of quintic discrete nonlinear Schrödinger equation

Ken Ichi Maruno, Yasuhiro Ohta, Nalini Joshi

研究成果: Article査読

15 被引用数 (Scopus)

抄録

We study a new quintic discrete nonlinear Schrödinger (QDNLS) equation which reduces naturally to an interesting symmetric difference equation of the form φn+1 + φn-1 = F(φn). Integrability of the symmetric mapping is checked by singularity confinement criteria and growth properties. Some new exact localized solutions for integrable cases are presented for certain sets of parameters. Although these exact localized solutions represent only a small subset of the large variety of possible solutions admitted by the QDNLS equation, those solutions presented here are the first example of exact localized solutions of the QDNLS equation. We also find chaotic behavior for certain parameters of nonintegrable case.

本文言語English
ページ(範囲)214-220
ページ数7
ジャーナルPhysics Letters, Section A: General, Atomic and Solid State Physics
311
2-3
DOI
出版ステータスPublished - 2003 5 12
外部発表はい

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「Exact localized solutions of quintic discrete nonlinear Schrödinger equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル