Exact soliton solutions of the one-dimensional complex Swift-Hohenberg equation

Ken Ichi Maruno*, Adrian Ankiewicz, Nail Akhmediev

*この研究の対応する著者

研究成果: Article査読

35 被引用数 (Scopus)

抄録

Using Painlevé analysis, the Hirota multi-linear method and a direct ansatz technique, we study analytic solutions of the (1+1)-dimensional complex cubic and quintic Swift-Hohenberg equations. We consider both standard and generalized versions of these equations. We have found that a number of exact solutions exist to each of these equations, provided that the coefficients are constrained by certain relations. The set of solutions include particular types of solitary wave solutions, hole (dark soliton) solutions and periodic solutions in terms of elliptic Jacobi functions and the Weierstrass ℘ function. Although these solutions represent only a small subset of the large variety of possible solutions admitted by the complex cubic and quintic Swift-Hohenberg equations, those presented here are the first examples of exact analytic solutions found thus far.

本文言語English
ページ(範囲)44-66
ページ数23
ジャーナルPhysica D: Nonlinear Phenomena
176
1-2
DOI
出版ステータスPublished - 2003 2月 15
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 凝縮系物理学
  • 応用数学

フィンガープリント

「Exact soliton solutions of the one-dimensional complex Swift-Hohenberg equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル