Existence and Decay of Solutions of Some Nonlinear Parabolic Variational Inequalities

Mitsuhiro Nakao, Takashi Narazaki

研究成果: Article査読

5 被引用数 (Scopus)

抄録

This paper discusses the existence and decay of solutions u(t) of the variational inequality of parabolic type: <u(t) + Au(t) + Bu(t) − f(t), v(t) − u(t)> ≧ 0 for ∀ v ∈ LP([0,∞);V (p≧2) with v(t) ∈ K a.e. in [0,∞), where K is a closed convex set of a separable uniformly convex Banach space V, A is a nonlinear monotone operator from V to V* and B is a nonlinear operator from Banach space W to W*. V and W are related as V ⊂ W ⊂ H for a Hilbert space H. No monotonicity assumption is made on B.

本文言語English
ページ(範囲)79-102
ページ数24
ジャーナルInternational Journal of Mathematics and Mathematical Sciences
3
1
DOI
出版ステータスPublished - 1980
外部発表はい

ASJC Scopus subject areas

  • Mathematics (miscellaneous)

フィンガープリント 「Existence and Decay of Solutions of Some Nonlinear Parabolic Variational Inequalities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル