Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion

Y. S. Choi, Roger Lui, Yoshio Yamada

    研究成果: Article査読

    47 被引用数 (Scopus)

    抄録

    The Shigesada-Kawasaki-Teramoto model is a generalization of the classical Lotka-Volterra competition model for which the competing species undergo both diffusion, self-diffusion and cross-diffusion. Very few mathematical results are known for this model, especially in higher space dimensions. In this paper, we shall prove global existence of strong solutions in any space dimension for this model when the cross-diffusion coefficient in the first species is sufficiently small and when there is no self-diffusion or cross-diffusion in the second species.

    本文言語English
    ページ(範囲)1193-1200
    ページ数8
    ジャーナルDiscrete and Continuous Dynamical Systems
    9
    5
    出版ステータスPublished - 2003 9

    ASJC Scopus subject areas

    • Mathematics(all)
    • Analysis
    • Applied Mathematics
    • Discrete Mathematics and Combinatorics

    フィンガープリント 「Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル