Experience with fine-grain communication in EM-X multiprocessor for parallel sparse matrix computation

Mitsuhisa Sato*, Yuetsu Kodama, Hirofumi Sakane, Hayato Yamana, Shuichi Sakai, Yoshinori Yamaguchi

*この研究の対応する著者

研究成果: Conference article査読

1 被引用数 (Scopus)

抄録

Sparse matrix problems require a communication paradigm different from those used in conventional distributed-memory multiprocessors. We present in this paper how fine-grain communication can help obtain high performance in the experimental distributed-memory multiprocessor, EM-X, developed at ETL, which can handle fine-grain communication very efficiently. The sparse matrix kernel, Conjugate Gradient, is selected for the experiments. Among the steps in CG is the sparse matrix vector multiplications we focus on in the study. Some communication methods are developed for performance comparison, including coarse-grain and fine-grain implementations. Fine-grain communication allows exact data access in an unstructured problem to reduce the amount of communication. While CG presents bottlenecks in terms of a large number of fine-grain remote reads, the multithreaded principles of execution is so designed to tolerate such latency. Experimental results indicate that the performance of fine-grain read implementation is comparable to that of coarse-grain implementation on 64 processors. The results demonstrate that fine-grain communication can be a viable and efficient approach to unstructured sparse matrix problems on large-scale distributed-memory multiprocessors.

本文言語English
ページ(範囲)242-248
ページ数7
ジャーナルProceedings of the International Parallel Processing Symposium, IPPS
出版ステータスPublished - 1997 1月 1
外部発表はい
イベントProceedings of the 1997 11th International Parallel Processing Symposium, IPPS 97 - Geneva, Switz
継続期間: 1997 4月 11997 4月 5

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ

フィンガープリント

「Experience with fine-grain communication in EM-X multiprocessor for parallel sparse matrix computation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル