Exponential decay phenomenon of the principal eigenvalue of an elliptic operator with a large drift term of gradient type

Shuichi Jimbo, Masato Kimura*, Hirofumi Notsu

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We study an asymptotic behaviour of the principal eigenvalue for an elliptic operator with large advection which is given by a gradient of a potential function. It is shown that the principal eigenvalue decays exponentially under the velocity potential well condition as the parameter tends to infinity. We reveal that the depth of the potential well plays an important role in the estimate. Particularly, in one-dimensional case, we give a much more elaborate characterization for the eigenvalue. Some numerical examples are also shown.

本文言語English
ページ(範囲)103-123
ページ数21
ジャーナルAsymptotic Analysis
65
1-2
DOI
出版ステータスPublished - 2009
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Exponential decay phenomenon of the principal eigenvalue of an elliptic operator with a large drift term of gradient type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル