Extended self organised criticality in asynchronously tuned cellular automata

    研究成果: Chapter

    2 被引用数 (Scopus)

    抄録

    Systems at a critical point in phase transitions can be regarded as being relevant to biological complex behaviour. Such a perspective can only result, in a mathematical consistent manner, from a recursive structure. We implement a recursive structure based on updating by asynchronously tuned elementary cellular automata (AT ECA), and show that a large class of elementary cellular automata (ECA) can reveal critical behavior due to the asynchronous updating and tuning. We show that the obtained criticality coincides with the criticality in phase transitions of asynchronous ECA with respect to density decay, and that multiple distributed ECAs, synchronously updated, can emulate critical behavior in AT_ECA. Our approach draws on concepts and tools from category and set theory, in particular on "adjunction dualities" of pairs of adjoint functors.

    本文言語English
    ホスト出版物のタイトルChaos, Information Processing and Paradoxical Games: The Legacy of John S. Nicolis
    出版社World Scientific Publishing Co.
    ページ411-430
    ページ数20
    ISBN(電子版)9789814602136
    ISBN(印刷版)9789814602129
    DOI
    出版ステータスPublished - 2014 1 1

    ASJC Scopus subject areas

    • Computer Science(all)
    • Mathematics(all)

    フィンガープリント 「Extended self organised criticality in asynchronously tuned cellular automata」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル