Extension of hidden markov models to deal with multiple candidates of observations and its application to mobile-robot-oriented gesture recognition

Yosuke Sato, Tetsunori Kobayashi

研究成果: Article査読

9 被引用数 (Scopus)

抄録

We propose a modified Hidden Markov Model (HMM) with a view to improving gesture recognition in the moving camera condition. We define a new gesture recognition framework in which multiple candidates of feature vectors are generated with confidence measures and the HMM is extended to deal with these multiple feature vectors. Experimental analysis comparing the proposed system with feature vectors based on DCT and the method of selecting only one candidate feature point verify the effectiveness of the technique.

本文言語English
ページ(範囲)515-519
ページ数5
ジャーナルProceedings - International Conference on Pattern Recognition
16
2
DOI
出版ステータスPublished - 2002

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Extension of hidden markov models to deal with multiple candidates of observations and its application to mobile-robot-oriented gesture recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル