Extremal dynamics on complex networks: Analytic solutions

N. Masuda*, K. I. Goh, B. Kahng

*この研究の対応する著者

研究成果査読

12 被引用数 (Scopus)

抄録

The Bak-Sneppen model displaying punctuated equilibria in biological evolution is studied on random complex networks. By using the rate equation and the random walk approaches, we obtain the analytic solution of the fitness threshold xc to be 1(+1), where f=k2k (=k) in the quenched (annealed) updating case, where kn is the nth moment of the degree distribution. Thus, the threshold is zero (finite) for the degree exponent γ<3 (γ>3) for the quenched case in the thermodynamic limit. The theoretical value xc fits well to the numerical simulation data in the annealed case only. Avalanche size, defined as the duration of successive mutations below the threshold, exhibits a critical behavior as its distribution follows a power law, Pa(s)∼s-32.

本文言語English
論文番号066106
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
72
6
DOI
出版ステータスPublished - 2005 12
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Extremal dynamics on complex networks: Analytic solutions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル