Fast and robust multiplane single-molecule localization microscopy using a deep neural network

Toshimitsu Aritake, Hideitsu Hino, Shigeyuki Namiki, Daisuke Asanuma, Kenzo Hirose, Noboru Murata

研究成果: Article査読

抄録

Single-molecule localization microscopy is a widely used technique in biological research for measuring the nanostructures of samples smaller than the diffraction limit. This study uses multifocal plane microscopy and addresses the three-dimensional (3D) single-molecule localization problem, where lateral and axial locations of molecules are estimated. However, when multifocal plane microscopy is used, the estimation accuracy of 3D localization is easily deteriorated by the small lateral drifts of camera positions. A 3D molecule localization problem was presented along with the lateral drift estimation as a compressed sensing problem. A deep neural network (DNN) was applied to solve this problem accurately and efficiently. The results show that the proposed method is robust to lateral drift and achieves an accuracy of 20 nm laterally and 50 nm axially without an explicit drift correction.

本文言語English
ページ(範囲)279-289
ページ数11
ジャーナルNeurocomputing
451
DOI
出版ステータスPublished - 2021 9 3

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 認知神経科学
  • 人工知能

フィンガープリント

「Fast and robust multiplane single-molecule localization microscopy using a deep neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル