Fast hypercomplex polar fourier analysis

Zhuo Yang*, Sci Ichiro Kamata

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Hypercomplex polar Fourier analysis treats a signal as a vector field and generalizes the conventional polar Fourier analysis. It can handle signals represented by hypercomplex numbers such as color images. Hypercomplex polar Fourier analysis is reversible that means it can reconstruct image. Its coefficient has rotation invariance property that can be used for feature extraction. However in order to increase the computation speed, fast algorithm is needed especially for image processing applications like realtime systems and limited resource platforms. This paper presents fast hypercomplex polar Fourier analysis based on symmetric properties and mathematical proper ies of trigonometric functions. Proposed fast hy percomplex polar Fourier analysis computes symmetric points simultane ously, which significantly reduce the computation time.

本文言語English
ページ(範囲)1166-1169
ページ数4
ジャーナルIEICE Transactions on Information and Systems
E95-D
4
DOI
出版ステータスPublished - 2012 4月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Fast hypercomplex polar fourier analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル