Fast polar and spherical fourier descriptors for feature extraction

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Polar Fourier Descriptor(PFD) and Spherical Fourier Descriptor( SFD) are rotation invariant feature descriptors for two dimensional( 2D) and three dimensional(3D) image retrieval and pattern recognition tasks. They are demonstrated to show superiorities compared with other methods on describing rotation invariant features of 2D and 3D images. However in order to increase the computation speed, fast computation method is needed especially for machine vision applications like realtime systems, limited computing environments and large image databases. This paper presents fast computation method for PFD and SFD that are deduced based on mathematical properties of trigonometric functions and associated Legendre polynomials. Proposed fast PFD and SFD are 8 and 16 times faster than direct calculation that significantly boost computation process. Furthermore, the proposed methods are also compact for memory requirements for storing PFD and SFD basis in lookup tables. The experimental results on both synthetic and real data are given to illustrate the efficiency of the proposed method.

本文言語English
ページ(範囲)1708-1715
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E93-D
7
DOI
出版ステータスPublished - 2010 7

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Fast polar and spherical fourier descriptors for feature extraction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル