Fast-reaction limit for Glauber-Kawasaki dynamics with two components

A. de Masi*, T. Funaki, E. Presutti, M. E. Vares

*この研究の対応する著者

研究成果査読

3 被引用数 (Scopus)

抄録

We consider the Kawasaki dynamics of two types of particles under a killing effect on a d-dimensional square lattice. Particles move with possibly different jump rates depending on their types. The killing effect acts when particles of different types meet at the same site. We show the existence of a limit under the diffusive space-time scaling and suitably growing killing rate: segregation of distinct types of particles does occur, and the evolution of the interface between the two distinct species is governed by the two-phase Stefan problem. We apply the relative entropy method and combine it with some PDE techniques.

本文言語English
ページ(範囲)957-976
ページ数20
ジャーナルAlea
16
2
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 統計学および確率

フィンガープリント

「Fast-reaction limit for Glauber-Kawasaki dynamics with two components」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル