Fault detection and diagnosis system for air-conditioning units using recurrent type neural network

Herath K U Samarasinghe*, Shuji Hashimoto

*この研究の対応する著者

    研究成果: Conference contribution

    5 被引用数 (Scopus)

    抄録

    The air-conditioning systems of buildings have been diversified in recent years, and the complexity of the system has been increased. At the same time, stability in the system and the low-running cost are demanded. To solve these problems, various researches have been done. The development of the energy load prediction systems and the faults detection and diagnosis systems have received greater attention. In this paper, we propose a real time fault diagnosis system for air conditioning units (the heating unit, the cooling unit, the air intake unit, and the air-recycling unit) using a recurrent type neural network.

    本文言語English
    ホスト出版物のタイトルProceedings of the IEEE International Conference on Systems, Man and Cybernetics
    出版社IEEE
    ページ2637-2642
    ページ数6
    4
    出版ステータスPublished - 2000
    イベント2000 IEEE International Conference on Systems, Man and Cybernetics - Nashville, TN, USA
    継続期間: 2000 10月 82000 10月 11

    Other

    Other2000 IEEE International Conference on Systems, Man and Cybernetics
    CityNashville, TN, USA
    Period00/10/800/10/11

    ASJC Scopus subject areas

    • ハードウェアとアーキテクチャ
    • 制御およびシステム工学

    フィンガープリント

    「Fault detection and diagnosis system for air-conditioning units using recurrent type neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル