Finite charge solutions to cubic schrödinger equations with a nonlocal nonlinearity in one space dimension

Kei Nakamura, Tohru Ozawa

研究成果: Article

1 引用 (Scopus)

抜粋

We study the Cauchy problem for cubic Schrödinger equations modelling ultra-short laser pulses propagating along the line. The global existence, blow-up, and scattering of solutions is described exclusively in the charge space L 2(R) without any approximating arguments.

元の言語English
ページ(範囲)789-801
ページ数13
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
33
発行部数2
DOI
出版物ステータスPublished - 2013 1 1

ASJC Scopus subject areas

  • Analysis
  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント Finite charge solutions to cubic schrödinger equations with a nonlocal nonlinearity in one space dimension' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用