Finite charge solutions to cubic schrödinger equations with a nonlocal nonlinearity in one space dimension

Kei Nakamura, Tohru Ozawa

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We study the Cauchy problem for cubic Schrödinger equations modelling ultra-short laser pulses propagating along the line. The global existence, blow-up, and scattering of solutions is described exclusively in the charge space L 2(R) without any approximating arguments.

本文言語English
ページ(範囲)789-801
ページ数13
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
33
2
DOI
出版ステータスPublished - 2013

ASJC Scopus subject areas

  • Analysis
  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「Finite charge solutions to cubic schrödinger equations with a nonlocal nonlinearity in one space dimension」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル