抄録
This paper presents a coherent analysis of the finite difference method to nonlinear Schrödinger (NLS) equations in one spatial dimension. We use the discrete H1 framework to establish well-posedness and error estimates in the L∞ norm. The nonlinearity f(u) of a NLS equation is assumed to satisfy only a growth condition. We apply our results to computation of blow-up solutions for a NLS equation with the nonlinearity f(u) = -
本文言語 | English |
---|---|
ページ(範囲) | 427-470 |
ページ数 | 44 |
ジャーナル | Japan Journal of Industrial and Applied Mathematics |
巻 | 33 |
号 | 2 |
DOI | |
出版ステータス | Published - 2016 7月 1 |
ASJC Scopus subject areas
- 工学(全般)
- 応用数学