Finite sheeted covering maps over 2-dimensional connected, compact Abelian groups

Katsuya Eda*, Vlasta Matijević

*この研究の対応する著者

    研究成果査読

    12 被引用数 (Scopus)

    抄録

    Let G be a 2-dimensional connected, compact Abelian group and s be a positive integer. We prove that a classification of s-sheeted covering maps over G is reduced to a classification of s-index torsionfree supergroups of the Pontrjagin dual Ĝ. Using group theoretic results from earlier paper we demonstrate its consequences. We also prove that for a connected compact group Y: (1) Every finite-sheeted co vering map from a connected space over Y is equivalent to a covering homomorphism from a compact, connected group. (2) If two finite-sheeted covering homomorphisms over Y are equivalent, then they are equivalent as topological homomorphisms.

    本文言語English
    ページ(範囲)1033-1045
    ページ数13
    ジャーナルTopology and its Applications
    153
    7
    DOI
    出版ステータスPublished - 2006 1 1

    ASJC Scopus subject areas

    • 幾何学とトポロジー

    フィンガープリント

    「Finite sheeted covering maps over 2-dimensional connected, compact Abelian groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル