Finite-temperature-based time-dependent density-functional theory method for static electron correlation systems

Takeshi Yoshikawa, Toshiki Doi, Hiromi Nakai*


研究成果: Article査読


In this study, we developed a time-dependent density-functional theory (TDDFT) with a finite-temperature (FT) scheme, denoted as FT-TDDFT. We introduced the concept of fractional occupation numbers for random phase approximation equation and evaluated the excited-state electronic entropy terms with excited-state occupation number. The orbital occupation numbers for the excited state were evaluated from the change in the ground-state electron configuration with excitation and deexcitation coefficients. Furthermore, we extended the FT formulation to the time-dependent density-functional tight-binding (TDDFTB) method for larger systems, denoted as FT-TDDFTB. Numerical assessment for the FT-(TD)DFT method showed smooth potential curves for double-bond rotation of ethylene in both ground and excited states. Excited-state calculations based on the FT-TDDFTB method were applied to the uniform π-stacking columns composed of trioxotriangulene, possessing neutral radicals in strong correlation systems.

ジャーナルJournal of Chemical Physics
出版ステータスPublished - 2020 6月 28

ASJC Scopus subject areas

  • 物理学および天文学(全般)
  • 物理化学および理論化学


「Finite-temperature-based time-dependent density-functional theory method for static electron correlation systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。