Finite Time Extinction for Nonlinear Schrödinger Equation in 1D and 2D

Rémi Carles, Tohru Ozawa

研究成果: Article

6 引用 (Scopus)

抜粋

We consider a nonlinear Schrödinger equation with power nonlinearity, either on a compact manifold without boundary, or on the whole space in the presence of harmonic confinement, in space dimension one and two. Up to introducing an extra superlinear damping to prevent finite time blow up, we show that the presence of a sublinear damping always leads to finite time extinction of the solution in 1D, and that the same phenomenon is present in the case of small mass initial data in 2D.

元の言語English
ページ(範囲)897-917
ページ数21
ジャーナルCommunications in Partial Differential Equations
40
発行部数5
DOI
出版物ステータスPublished - 2015 1 1

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント Finite Time Extinction for Nonlinear Schrödinger Equation in 1D and 2D' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用