Finite type invariants of nanowords and nanophrases

Andrew Gibson, Noboru Ito

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Homotopy classes of nanowords and nanophrases are combinatorial generalizations of virtual knots and links. Goussarov, Polyak and Viro defined finite type invariants for virtual knots and links via semi-virtual crossings. We extend their definition to nanowords and nanophrases. We study finite type invariants of low degrees. In particular, we show that the linking matrix and T invariant defined by Fukunaga are finite type of degree 1 and degree 2 respectively. We also give a finite type invariant of degree 4 for open homotopy of Gauss words.

本文言語English
ページ(範囲)1050-1072
ページ数23
ジャーナルTopology and its Applications
158
8
DOI
出版ステータスPublished - 2011 5 15

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント 「Finite type invariants of nanowords and nanophrases」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル