Finite type invariants of nanowords and nanophrases

Andrew Gibson, Noboru Ito

研究成果: Article

4 引用 (Scopus)

抜粋

Homotopy classes of nanowords and nanophrases are combinatorial generalizations of virtual knots and links. Goussarov, Polyak and Viro defined finite type invariants for virtual knots and links via semi-virtual crossings. We extend their definition to nanowords and nanophrases. We study finite type invariants of low degrees. In particular, we show that the linking matrix and T invariant defined by Fukunaga are finite type of degree 1 and degree 2 respectively. We also give a finite type invariant of degree 4 for open homotopy of Gauss words.

元の言語English
ページ(範囲)1050-1072
ページ数23
ジャーナルTopology and its Applications
158
発行部数8
DOI
出版物ステータスPublished - 2011 5 15

    フィンガープリント

ASJC Scopus subject areas

  • Geometry and Topology

これを引用