First- and second-order hypothesis testing for mixed memoryless sources with general mixture

Te Sun Han, Ryo Nomura

研究成果: Conference contribution

抜粋

The first- and second-order optimum achievable exponents in the simple hypothesis testing problem are investigated. The optimum achievable exponent for type II error probability, under the constraint that the type I error probability is allowed asymptotically up to ϵ, is called the ϵ-optimum exponent. In this paper, we first give the second-order ϵ-exponent in the case where the null hypothesis and the alternative hypothesis are a mixed memoryless source and a stationary memoryless source, respectively. We next generalize this setting to the case where the alternative hypothesis is also a mixed memoryless source. We address the first-order ϵ-optimum exponent in this setting.

元の言語English
ホスト出版物のタイトル2017 IEEE International Symposium on Information Theory, ISIT 2017
出版者Institute of Electrical and Electronics Engineers Inc.
ページ126-130
ページ数5
ISBN(電子版)9781509040964
DOI
出版物ステータスPublished - 2017 8 9
外部発表Yes
イベント2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
継続期間: 2017 6 252017 6 30

出版物シリーズ

名前IEEE International Symposium on Information Theory - Proceedings
ISSN(印刷物)2157-8095

Other

Other2017 IEEE International Symposium on Information Theory, ISIT 2017
Germany
Aachen
期間17/6/2517/6/30

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

フィンガープリント First- and second-order hypothesis testing for mixed memoryless sources with general mixture' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Han, T. S., & Nomura, R. (2017). First- and second-order hypothesis testing for mixed memoryless sources with general mixture. : 2017 IEEE International Symposium on Information Theory, ISIT 2017 (pp. 126-130). [8006503] (IEEE International Symposium on Information Theory - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2017.8006503