First application of the super-resolution imaging technique using a Compton camera

S. Sato*, J. Kataoka, J. Kotoku, M. Taki, A. Oyama, L. Tagawa, K. Fujieda, F. Nishi, T. Toyoda

*この研究の対応する著者

    研究成果: Article査読

    5 被引用数 (Scopus)

    抄録

    In medical imaging, precise and reliable images are very important. However, the quality of medical images is sometimes limited by low-event statistics owing to the low sensitivity of the detectors commonly used in radiology. On the other hand, long exposure to radiation and long inspection duration can become a burden for patients. In this paper, we propose a method for generating high-quality images of gamma ray sources from low statistic data by using machine learning methods based on dictionary learning and sparse coding. As the first application, we generated a high-quality image of 137Cs, which emits 662-keV gamma rays, from low-event statistics measured using a Compton camera. We simulated with Geant4 various geometries of the gamma-ray source (137Cs; 662 keV) as measured with a Compton camera by Geant4. Then, complete sets of low-resolution and high-resolution dictionaries were prepared. We generated super-resolution images from low-resolution test images obtained from actual measurements. The convergence of the gamma-ray images was similar for both the ground truth and predicted images, as supported by the improvements in the structural similarity (SSIM), peak signal-to-noise (PSNR) ratio, and root mean square error (RMSE) in the corresponding images. We also discuss future plans to use the super-resolution technique for visualizing radium chloride (223RaCl2) in the patient's body, which will make it possible to achieve in-vivo imaging of alpha-particle internal therapy for the first time.

    ASJC Scopus subject areas

    • 核物理学および高エネルギー物理学
    • 器械工学

    フィンガープリント

    「First application of the super-resolution imaging technique using a Compton camera」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル