Flows in fibers

Junichi Tanaka*

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Let be the algebra of all bounded analytic functions on the open unit disc Δ, and let be the maximal ideal space of Using a flow, we represent a reasonable portion of a fiber in This indicates a relation between the corona theorem and the individual ergodic theorem. As an application, we answer a question of Forelli [3] by showing that there exists a minimal flow on which the induced uniform algebra is not a Dirichlet algebra. The proof rests on the fact that the closure of a nonhomeomorphic part in may contain a homeomorphic copy of Taking suitable factors, we may construct a lot of minimal flows which are not strictly ergodic.

本文言語English
ページ(範囲)779-804
ページ数26
ジャーナルTransactions of the American Mathematical Society
343
2
DOI
出版ステータスPublished - 1994
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Flows in fibers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル