Fog computing based content-aware taxonomy for caching optimization in information-centric networks

Meng Wang, Jun Wu, Gaolei Li, Jianhua Li, Qiang Li

研究成果: Conference contribution

12 被引用数 (Scopus)

抄録

Traditional internet architecture is challenged and it cannot satisfy the growing demand of todays networks. Information-centric Networks (ICN) is regarding as a promising replacement to meet this trend. The main characteristic in ICN is Content Store (CS), which is used to enable users to retrieve data from nearby nodes instead of remote server. However, with the limited storage capacity of routers, we cannot make the most use of the concept of CS. In this paper, we proposed a novel framework using fog computing as a middle level to communicate both with underlying network and ICN global network, where data is preprocessed and classed in fog node before transferring to ICN. In this way, we can reduce the total number of caching content in network by labeling the dynamic data and user-shareable data. We proved that with limited storage capacity of content store, we cannot profit from in-network caching. This result suggests the necessity of proposed framework.

本文言語English
ホスト出版物のタイトル2017 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2017
出版社Institute of Electrical and Electronics Engineers Inc.
ページ474-475
ページ数2
ISBN(電子版)9781538627846
DOI
出版ステータスPublished - 2017 11月 20
外部発表はい
イベント2017 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2017 - Atlanta, United States
継続期間: 2017 5月 12017 5月 4

出版物シリーズ

名前2017 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2017

Conference

Conference2017 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2017
国/地域United States
CityAtlanta
Period17/5/117/5/4

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • 制御と最適化
  • 人工知能
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Fog computing based content-aware taxonomy for caching optimization in information-centric networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル