Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach

研究成果: Article査読

3 被引用数 (Scopus)

抄録

This paper presents a method for creating machine learning models, specifically a gradient boosting model and a random forest model, to forecast real GDP growth. This study focuses on the real GDP growth of Japan and produces forecasts for the years from 2001 to 2018. The forecasts by the International Monetary Fund and Bank of Japan are used as benchmarks. To improve out-of-sample prediction, the cross-validation process, which is designed to choose the optimal hyperparameters, is used. The accuracy of the forecast is measured by mean absolute percentage error and root squared mean error. The results of this paper show that for the 2001–2018 period, the forecasts by the gradient boosting model and random forest model are more accurate than the benchmark forecasts. Between the gradient boosting and random forest models, the gradient boosting model turns out to be more accurate. This study encourages increasing the use of machine learning models in macroeconomic forecasting.

本文言語English
ページ(範囲)247-265
ページ数19
ジャーナルComputational Economics
57
1
DOI
出版ステータスPublished - 2021 1

ASJC Scopus subject areas

  • 経済学、計量経済学および金融学(その他)
  • コンピュータ サイエンスの応用

フィンガープリント

「Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル