Frobenius morphisms and derived categories on two dimensional toric Deligne-Mumford stacks

Ryo Okawa, Hokuto Uehara

研究成果: Article査読

5 被引用数 (Scopus)

抄録

For a toric Deligne-Mumford (DM) stack X, we can consider a certain generalization of the Frobenius endomorphism. For such an endomorphism F:X→X on a dimensional toric DM stack X, we show that the push-forward F*OX of the structure sheaf generates the bounded derived category of coherent sheaves on X .We also choose a full strong exceptional collection from the set of direct summands of F *OX in several examples of two dimensional toric DM orbifolds X.

本文言語English
ページ(範囲)241-267
ページ数27
ジャーナルAdvances in Mathematics
244
DOI
出版ステータスPublished - 2013 9
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Frobenius morphisms and derived categories on two dimensional toric Deligne-Mumford stacks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル