Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model

研究成果: Article査読

抄録

This paper studies the asymptotic behavior of coexistence steady-states of the Shigesada-Kawasaki-Teramoto model as both cross-diffusion coefficients tend to infinity at the same rate. In the case when either one of two cross-diffusion coefficients tends to infinity, Lou and Ni [18] derived a couple of limiting systems, which characterize the asymptotic behavior of coexistence steady-states. Recently, a formal observation by Kan-on [10] implied the existence of a limiting system including the nonstationary problem as both cross-diffusion coefficients tend to infinity at the same rate. This paper gives a rigorous proof of his observation as far as the stationary problem. As a key ingredient of the proof, we establish a uniform L estimate for all steady-states. Thanks to this a priori estimate, we show that the asymptotic profile of coexistence steady-states can be characterized by a solution of the limiting system.

本文言語English
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 応用数学

フィンガープリント

「Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル