Fully Bayesian inference of multi-mixture Gaussian model and its evaluation using speaker clustering

Naohiro Tawara*, Tetsuji Ogawa, Shinji Watanabe, Tetsunori Kobayashi

*この研究の対応する著者

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

This study aims to verify effective optimization methods for estimating parametric, fully Bayesian models in speech processing. For that purpose, we investigate the impact of the difference in optimization methods for the multi-scale Gaussian mixture model, which is suitable for speaker clustering, on the clustering accuracy. The Markov chain Monte Carlo (MCMC)-based method was compared with the variational Bayesian method in the speaker clustering experiment; with a small amount of data, the MCMC-based method was more effective; with large scale data (more than one million samples), the difference between these methods in terms of the clustering accuracy decreased and the MCMC-based method was computationally efficient.

本文言語English
ホスト出版物のタイトル2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012 - Proceedings
ページ5253-5256
ページ数4
DOI
出版ステータスPublished - 2012
イベント2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012 - Kyoto, Japan
継続期間: 2012 3月 252012 3月 30

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

Conference

Conference2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012
国/地域Japan
CityKyoto
Period12/3/2512/3/30

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Fully Bayesian inference of multi-mixture Gaussian model and its evaluation using speaker clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル