G δ -topology and compact cardinals

Toshimichi Usuba*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

For a topological space X, let X δ be the space X with the G δ -topology of X. For an uncountable cardinal κ, we prove that the following are equivalent: (1) κ is ω1-strongly compact. (2) For every compact Hausdorff space X, the Lindelöf degree of X δ is ≤ κ. (3) For every compact Hausdorff space X, the weak Lindelöf degree of X δ is ≤ κ. This shows that the least ω1-strongly compact cardinal is the supremum of the Lindelöf and the weak Lindelöf degrees of compact Hausdorff spaces with the G δ -topology. We also prove that the least measurable cardinal is the supremum of the extents of compact Hausdorff spaces with the G δ -topology. For the square of a Lindelöf space, using a weak G δ -topology, we prove that the following are consistent: (1) The least ω1-strongly compact cardinal is the supremum of the (weak) Lindelöf degrees of the squares of regular T1 Lindelöf spaces. (2) The least measurable cardinal is the supremum of the extents of the squares of regular T1 Lindelöf spaces.

本文言語English
ページ(範囲)71-87
ページ数17
ジャーナルFundamenta Mathematicae
246
1
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「G <sub>δ</sub> -topology and compact cardinals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル