Gait planning for biped locomotion on slippery terrain

Martim Brandão, Kenji Hashimoto, José Santos-Victor, Atsuo Takanishi

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

We propose a new biped locomotion planning method that optimizes locomotion speed subject to friction constraints. For this purpose we use approximate models of required coefficient of friction (RCOF) as a function of gait. The methodology is inspired by findings in human gait analysis, where subjects have been shown to adapt spatial and temporal variables of gait in order to reduce RCOF in slippery environments. Here we solve the friction problem similarly, by planning on gait parameter space: namely foot step placement, step swing time, double support time and height of the center of mass (COM). We first used simulations of a 48 degrees-of-freedom robot to estimate a model of how RCOF varies with these gait parameters. Then we developed a locomotion planning algorithm that minimizes the time the robot takes to reach a goal while keeping acceptable RCOF levels. Our physics simulation results show that RCOF-aware planning can drastically reduce slippage amount while still maximizing efficiency in terms of locomotion speed. Also, according to our experiments human-like stretched-knees walking can reduce slippage amount more than bent-knees (i.e. crouch) walking for the same speed.

本文言語English
ホスト出版物のタイトル2014 IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014
出版社IEEE Computer Society
ページ303-308
ページ数6
ISBN(電子版)9781479971749
DOI
出版ステータスPublished - 2015 2月 12
イベント2014 14th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014 - Madrid, Spain
継続期間: 2014 11月 182014 11月 20

出版物シリーズ

名前IEEE-RAS International Conference on Humanoid Robots
2015-February
ISSN(印刷版)2164-0572
ISSN(電子版)2164-0580

Other

Other2014 14th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014
国/地域Spain
CityMadrid
Period14/11/1814/11/20

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • ハードウェアとアーキテクチャ
  • 人間とコンピュータの相互作用
  • 電子工学および電気工学

フィンガープリント

「Gait planning for biped locomotion on slippery terrain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル