Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks

N. M. Ball, J. Loveday, M. Fukugita, O. Nakamura, S. Okamura, J. Brinkmann, R. J. Brunner

研究成果: Review article査読

97 被引用数 (Scopus)

抄録

Supervised artificial neural networks are used to predict useful properties of galaxies in the Sloan Digital Sky Survey, in this instance morphological classifications, spectral types and redshifts. By giving the trained networks unseen data, it is found that correlations between predicted and actual properties are around 0.9 with rms errors of order ten per cent. Thus, given a representative training set, these properties may be reliably estimated for galaxies in the survey for which there are no spectra and without human intervention.

本文言語English
ページ(範囲)1038-1046
ページ数9
ジャーナルMonthly Notices of the Royal Astronomical Society
348
3
DOI
出版ステータスPublished - 2004 3 1
外部発表はい

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

フィンガープリント 「Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル