Gender classification based on integration of multiple classifiers using various features of facial and neck images

Kazuya Ueki*, Tetsunori Kobayashi

*この研究の対応する著者

研究成果: Article査読

抄録

To reduce the rate of error in gender classification, we propose the use of an integration framework that uses conventional facial images along with neck images. First, images are separated into facial and neck regions, and features are extracted from monochrome, color, and edge images of both regions. Second, we use Support Vector Machines (SVMs) to classify the gender of each individual feature. Finally, we reclassify the gender by considering the six types of distances from the optimal separating hyperplane as a 6-dimensional vector. Experimental results show a 28.4% relative reduction in error over the performance baseline of the monochrome facial image approach, which until now had been considered to have the most accurate performance.

本文言語English
ページ(範囲)1803-1809
ページ数7
ジャーナルKyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers
61
12
DOI
出版ステータスPublished - 2007 12月

ASJC Scopus subject areas

  • メディア記述
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Gender classification based on integration of multiple classifiers using various features of facial and neck images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル