Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation

Ken Ichi Maruno*, Wen Xiu Ma, Masayuki Oikawa

*この研究の対応する著者

研究成果査読

22 被引用数 (Scopus)

抄録

A set of conditions is presented for Casorati determinants to give solutions to the Toda lattice equation. It is used to establish a relation between the Casorati determinant solutions and the generalized Casorati determinant solutions. Positons, negatons and their interaction solutions of the Toda lattice equation are constructed through the generalized Casorati determinant technique. A careful analysis is also made for general positons and negatons, the resulting positons and negatons of order one being explicitly computed. The generalized Casorati determinant formulation for the two dimensional Toda lattice (2dTL) equation is presented. It is shown that positon, negaton and complexiton type solutions in the 2dTL equation exist and these solutions reduce to positon, negaton and complexiton type solutions in the Toda lattice equation by the standard reduction procedure.

本文言語English
ページ(範囲)831-837
ページ数7
ジャーナルjournal of the physical society of japan
73
4
DOI
出版ステータスPublished - 2004 4
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル