GeneralizedMm,r-Network: A Case for Fixed Message Dimensions

Vikrant Singh, Behrouz Zolfaghari*, Chunduri Venkata Dheeraj Kumar, Brijesh Kumar Rai, Khodakhast Bibak, Gautam Srivastava, Swapnoneel Roy, Takeshi Koshiba

*この研究の対応する著者

研究成果: Article査読

抄録

In this letter, we first present a class of networks named Generalized {{M}}_{{ \textit {m, r}}} -Network for every integer {m} \geq 2 and \forall {r} \in \{0, 1,\ldots, {m}-1\} and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of {m}. We show that the Generalized {M} -Network presented in the work of Das and Rai and the Dim- {m} Network introduced in the work of Connelly and Zeger which are generalizations to the {M} -Network can be considered as special cases of Generalized {M}_{\textit {m, r}} -Network for {r}=1 and {r}={m}-1 respectively. Then we focus on a problem induced by depending on integer multiples of {m} as message dimensions to achieve the linear coding capacity in the class of Generalized {M}_{\textit {m, r}} (proven to be equal to 1). We note that for large values of {m} , packet sizes will grow beyond feasible thresholds in real-world networks. This motivates us to examine the capacity of the network in the case of fixed message dimensions. A study on the contrast among the impacts of fixed message dimensions in different networks of class {M}_{\textit {m, r}} -Network highlights the importance of the examined problem. In addition to complete/partial solutions obtained for different networks of the class Generalized {M}_{\textit {m, r}} -Network, our studies pose some open problems which make the Generalized {M}_{\textit {m, r}} -Network an attractive topic for further research.

本文言語English
論文番号8886606
ページ(範囲)38-42
ページ数5
ジャーナルIEEE Communications Letters
24
1
DOI
出版ステータスPublished - 2020 1月

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「GeneralizedMm,r-Network: A Case for Fixed Message Dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル