Genetic algorithm based optimization of partly-hidden markov model structure using discriminative criterion

Tetsuji Ogawa*, Tetsunori Kobayashi

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

A discriminative modeling is applied to optimize the structure of a Partly-Hidden Markov Model (PHMM). PHMM was proposed in our previous work to deal with the complicated temporal changes of acoustic features. It can represent observation dependent behaviors in both observations and state transitions. In the formulation of the previous PHMM, we used a common structure for all models. However, it is expected that the optimal structure which gives the best performance differs from category to category. In this paper, we designed a new structure optimization method in which the dependence of the states and the observations of PHMM are optimally defined according to each model using the weighted likelihood-ratio maximization (WLRM) criterion. The WLRM criterion gives high discriminability between the correct category and the incorrect categories. Therefore it gives model structures with good discriminative performance. We define the model structure combination which satisfy the WLRM criterion for any possible structure combinations as the optimal structures. A genetic algorithm is also applied to the adequate approximation of a full search. With results of continuous lecture talk speech recognition, the effectiveness of the proposed structure optimization is shown: it reduced the word errors compared to HMM and PHMM with a common structure for all models.

本文言語English
ページ(範囲)939-945
ページ数7
ジャーナルIEICE Transactions on Information and Systems
E89-D
3
DOI
出版ステータスPublished - 2006

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Genetic algorithm based optimization of partly-hidden markov model structure using discriminative criterion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル