GIF-LR:GA-based informative feature for lipreading

Naoya Ukai, Takumi Seko, Satoshi Tamura, Satoru Hayamizu

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

In this paper, we propose a general and discriminative feature "GIF" (GA-based Informative Feature), and apply the feature to lipreading (visual speech recognition). The feature extraction method consists of two transforms, that convert an input vector to GIF for recognition. The transforms can be computed using training data and Genetic Algorithm (GA). For lipreading, we extract a fundamental feature as an input vector from an image; the vector consists of intensity values at all the pixels in an input lip image, which are enumerated from left-top to right-bottom. Recognition experiments of continuous digit utterances were conducted using an audio-visual corpus including more than 268,000 lip images. The recognition results show that the GIF-based method is better than the baseline method using eigenlip features.

本文言語English
ホスト出版物のタイトル2012 Conference Handbook - Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012
出版ステータスPublished - 2012
外部発表はい
イベント2012 4th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012 - Hollywood, CA, United States
継続期間: 2012 12 32012 12 6

出版物シリーズ

名前2012 Conference Handbook - Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012

Other

Other2012 4th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012
CountryUnited States
CityHollywood, CA
Period12/12/312/12/6

ASJC Scopus subject areas

  • Information Systems

フィンガープリント 「GIF-LR:GA-based informative feature for lipreading」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル