Gin and lex of certain monomial ideals

Satoshi Murai*, Takayuki Hibi

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Let A = K[x1, . . ., xn] denote the polynomial ring in n variables over a field K of characteristic 0 with each deg xi = 1. Given arbitrary integers i and j with 2 ≤ i ≤ n and 3 ≤ j ≤ n, we will construct a monomial ideal I ⊂ A such that (i) βk(I) < βk(Gin(I)) for all k < i, (ii) βi(I) = βi(Gin(I)), (iii) β(Gin(I)) < β(Lex(I)) for all ℓ < j and (iv) βj(Gin(I))=βj(Lex(I)), where Gin(I) is the generic initial ideal of I with respect to the reverse lexicographic order induced by x1 > . . . > xn and where Lex(I) is the lexsegment ideal with the same Hilbert function as I.

本文言語English
ページ(範囲)76-86
ページ数11
ジャーナルMathematica Scandinavica
99
1
DOI
出版ステータスPublished - 2006
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Gin and lex of certain monomial ideals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル