Global and periodic solutions for nonlinear wave equations with some localized nonlinear dissipation

Mitsuhiro Nakao*

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We discuss the existence of global or periodic solutions to the nonlinear wave equation [utt - Δu + ρ(x, ut) + β(x, u) = f (x, t) εΩ x R+(R ] with the boundary condition u ∂Ω, where Ω is a bounded domain in RN, ρ(x, ν) is a function like ρ(x, ν) = a(x)g(ν) with g′(ν) ≥0 and β(x, u) is a source term of power nonlinearity. a(x) is assumed to be positive only in a neighborhood of a part of the boundary ∂Ω and the stability property is very delicate, which makes the problem interesting.

本文言語English
ページ(範囲)81-107
ページ数27
ジャーナルJournal of Differential Equations
190
1
DOI
出版ステータスPublished - 2003 5月 1
外部発表はい

ASJC Scopus subject areas

  • 分析

フィンガープリント

「Global and periodic solutions for nonlinear wave equations with some localized nonlinear dissipation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル