Global existence and exponential stability of small solutions to nonlinear viscoelasticity

研究成果: Article査読

85 被引用数 (Scopus)

抄録

The global existence of smooth solutions to the equations of nonlinear hyperbolic system of 2nd order with third order viscosity is shown for small and smooth initial data in a bounded domain of n-dimensional Euclidean space with smooth boundary. Dirichlet boundary condition is studied and the asymptotic behaviour of exponential decay type of solutions as t tending to ∞ is described. Time periodic solutions are also studied. As an application of our main theorem, nonlinear viscoelasticity, strongly damped nonlinear wave equation and acoustic wave equation in viscous conducting fluid are treated.

本文言語English
ページ(範囲)189-208
ページ数20
ジャーナルCommunications in Mathematical Physics
148
1
DOI
出版ステータスPublished - 1992 8 1
外部発表はい

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Global existence and exponential stability of small solutions to nonlinear viscoelasticity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル