Global existence results for the Navier–Stokes equations in the rotational framework in Fourier–Besov spaces

Daoyuan Fang, Bin Han, Matthias Georg Hieber

研究成果: Chapter

1 被引用数 (Scopus)

抄録

Consider the equations of Navier–Stokes in ℝ3 in the rotational setting, i.e., with Coriolis force. It is shown that this set of equations admits a unique, global mild solution provided the initial data is small with respect to the norm of the Fourier–Besov space ḞB2−3/p p,r (ℝ3), where p ∈ (1,∞] and r ∈ [1,∞]. In the two-dimensional setting, a unique, global mild solution to this set of equations exists for non-small initial data u0 ∈ Lp σ(ℝ2) for p ∈ [2,∞).

元の言語English
ホスト出版物のタイトルOperator Theory: Advances and Applications
出版者Springer International Publishing
ページ199-211
ページ数13
250
出版物ステータスPublished - 2015
外部発表Yes

出版物シリーズ

名前Operator Theory: Advances and Applications
250
ISSN(印刷物)02550156
ISSN(電子版)22964878

ASJC Scopus subject areas

  • Analysis

フィンガープリント 「Global existence results for the Navier–Stokes equations in the rotational framework in Fourier–Besov spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル