Global large solutions and incompressible limit for the compressible Navier–Stokes system with capillarity

研究成果: Article査読

抄録

Consider the Cauchy problem for the barotropic compressible Navier–Stokes–Korteweg equations in the whole space Rd (d≥2), supplemented with large initial velocity v0 and almost constant initial density ϱ0. In the two-dimensional case, the global solutions are shown in the critical Besov spaces framework without any restrictions on the size of the initial velocity, provided that the pressure admits a stability condition and the volume viscosity is sufficiently large. The result still holds for the higher dimensional case d≥3 under the additional assumption that the classical incompressible Navier-Stokes equations, supplemented with the initial velocity as the Helmholtz projection of v0, admits a global strong solution.

本文言語English
論文番号126675
ジャーナルJournal of Mathematical Analysis and Applications
518
1
DOI
出版ステータスPublished - 2023 2月 1

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Global large solutions and incompressible limit for the compressible Navier–Stokes system with capillarity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル