Global solvability of compressible–incompressible two-phase flows with phase transitions in bounded domains

研究成果: Article査読

抄録

Consider a free boundary problem of compressible-incompressible two-phase flows with surface tension and phase transition in bounded domains Ωt+, Ωt− ⊂ RN, N ≥ 2, where the domains are separated by a sharp compact interface Γt ⊂ RN−1 . We prove a global in time unique existence theorem for such free boundary problem under the assumption that the initial data are sufficiently small and the initial domain of the incompressible fluid is close to a ball. In particular, we obtain the solution in the maximal Lp − Lq-regularity class with 2 < p < ∞ and N < q < ∞ and exponential stability of the corresponding analytic semigroup on the infinite time interval.

本文言語English
論文番号258
ページ(範囲)1-28
ページ数28
ジャーナルMathematics
9
3
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Global solvability of compressible–incompressible two-phase flows with phase transitions in bounded domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル