Global solvability of the Navier-Stokes equations with a free surface in the maximal Lp-Lq regularity class

Hirokazu Saito

    研究成果: Article査読

    11 被引用数 (Scopus)

    抄録

    We consider the motion of incompressible viscous fluids bounded above by a free surface and below by a solid surface in the N-dimensional Euclidean space for N≥2. The aim of this paper is to show the global solvability of the Navier-Stokes equations with a free surface, describing the above-mentioned motion, in the maximal Lp-Lq regularity class. Our approach is based on the maximal Lp-Lq regularity with exponential stability for the linearized equations, and also it is proved that solutions to the original nonlinear problem are exponentially stable.

    本文言語English
    ジャーナルJournal of Differential Equations
    DOI
    出版ステータスAccepted/In press - 2017

    ASJC Scopus subject areas

    • 分析

    フィンガープリント

    「Global solvability of the Navier-Stokes equations with a free surface in the maximal L<sub>p</sub>-L<sub>q</sub> regularity class」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル